Содержание
- 1 Как светят лампочки
- 2 Как меняются параметры светодиодной лампы со временем?
- 3 Выключатели с регулятором яркости — диммеры для разных типов ламп
- 4 Замена люминесцентных ламп 36Вт на светодиодные аналоги
- 4.1 Возможные варианты замены ламп
- 4.2 Технические характеристики ламп и предварительный расчет
- 4.3 Подключение ламп, переделка светильников
- 4.4 Эксперимент с подключением светодиодных ламп для ЭмПРА
- 4.5 Эксперимент с подключением светодиодных ламп прямого включения
- 4.6 Результаты эксперимента
- 4.7 Плюсы и минусы замены люминесцентных ламп на светодиодные
- 4.8 Выводы
- 5 Оцениваем эффективность применения диммера для ламп накаливания
- 6 Как увеличить яркость светодиодной лампы на 25% ?
Как светят лампочки
Иллюстрация: Максим Чатский
Все современные лампы можно поделить на три типа в зависимости от того, каким светом они светят: излучение нагретым телом, свечение ионизированного газа под током и светодиоды.
Лампа накаливания
Свет от лампочки накаливания желтоватый. Чтобы получить белый свет, близкий к дневному, необходимо разогреть нить до температуры солнца 5500 °С, а это сделать невозможно — нить просто расплавится.
Лампа накаливания устроена просто: по вольфрамовой нити идет ток и нагревает ее до большой температуры, в результате чего она начинает светиться.
Из-за простоты устройства это до сих пор самый распространенный способ освещения.
Но у лампы накаливания есть один очень серьезный недостаток: высокое энергопотребление.
КПД лампы около 2%, то есть 98% энергии уходит в тепло. Хороший обогреватель, но плохой источник света.
Чтобы увеличить КПД лампы накаливания, в колбу под давлением закачивают пары брома или йода, который позволяет увеличить температуру нити. Такие лампы называются галогенными. Они меньше по размеру и имеют большую яркость и срок работы, меньшее энергопотребление.
Но у галогенной лампы тоже есть большой недостаток: она пожароопасна из за того, что очень сильно греется.
Поэтому, например, ее нельзя трогать руками: отпечатки пальцев начинают сгорать из-за очень высокой температуры, а это портит поверхность колбы и она может треснуть.
Галогенные лампы чаще всего используются в фарах автомобилей.
Лампа дневного света
Цвет получаемого света зависит от газа, которым заполнена трубка. Это позволяет делать разноцветные вывески из неоновых трубок.
- — Гелий: синий
- — Неон: красно-оранжевый
- — Аргон: сиреневый
- — Криптон: сине-белый
- — Пары ртути: голубовато-зелёный
Стеклянная трубка заполнена инертным газом и парами ртути. На концах электроды, на которые подается электрический ток. Ток проходит через газ.
Электроны бегут по газу и сталкиваются с атомами ртути, выбивают электроны в атомах ртути с их привычной орбиты на более высокую.
Сразу после столкновения электроны прыгают обратно на свою привычную орбиту, при этом возвращают полученную от тока энергию в виде света.
В лампах дневного света газ вырабатывает ультрафиолетовый свет, невидимый глазу. Но внутренние стенки колбы у таких ламп покрыты люминофором, веществом, испускающий видимый свет, когда на него попадает ультрафиолетовый.
Запустить такую лампу непросто, для этого есть специальное устройство — стартер. Чтобы ток пошел по газу, его надо ионизировать, то есть отделить электроны от атомов.
Для этого оба электрода нагревают, с них испаряются электроны, сталкиваются с атомами газа и выбивают из них электроны. После этого резким скачком напряжения между катодами запускается электрическая дуга, по которой по газу идет ток.
Лампа не всегда с первого раза загорается, именно поэтому она иногда несколько раз моргает, прежде чем загореться.
Лампы дневного света гораздо экономнее ламп накаливания и качество света у них лучше. Но из-за сложности их устройства они гораздо меньше распространены.
Сейчас научились делать лампы дневного света, совместимые со стандартными цоколями, и существенно удешевили производство.
Учитывая большой срок службы и низкое энергопотребление, причин не пользоваться такими лампами не осталось.
Светодиоды
Светодиод состоит из двух полупроводников. У одного из них избыток электронов, а у другого наоборот — недостаток.
Когда ток идет по такому диоду, избыточные электроны с первого полупроводника падают в «дырки» от недостающих электронов во втором.
Во время этого перехода высвобождается энергия в виде света.
Долгое время светодиоды использовались только как индикаторы в электрических устройствах, поскольку светили они очень тускло.
Но с появлением сверхъярких светодиодов ситуация изменилась.
Теперь они стоят в светофорах, автомобильных фарах, фонариках, рекламных экранах и в подсветке мониторов.
Светодиоды потребляют немыслимо мало энергии, при этом они очень яркие и долговечные. Единственный недостаток — сравнительно высокая цена, но и она падает за счет широкого распространения.
Невидимая война
Многие страны ведут войну с лампами накаливания, законодательно ограничивая их производство и продажу.
Это стремление можно понять: если заменить лампы накаливания, на более экономичные лампы дневного света и светодиоды, то человечество сэкономит огромное количество энергии.
С 1 января и в России вступает запрет на продажу ламп накаливания мощностью 100 и более ватт, в 2013 и 2014 лимит опустится до 75 и 25 ватт. Так что запомните их, пока они еще живы: будете внукам рассказывать, как вы читали журналы под лампочкой Ильича.
Источник: https://theoryandpractice.ru/posts/514-kak-svetyat-lampochki
Как меняются параметры светодиодной лампы со временем?
Качественные светодиодные лампы помогают улучшить параметры освещенности жилых и офисных помещений.
Они стабильно работают, не мерцают, хорошо сохраняют оттенки предметов.
Но этим осветительным приборам необходимо устраивать периодическую проверку «с пристрастием», так как со временем некоторые из них меняют свои характеристики.
Параметры светодиодных ламп: информация на упаковке
Производители указывают основные параметры светодиодных ламп на упаковке. Выбирая приборы, внимательно изучите эту информацию: она поможет оценить их качество и функциональность. Остановимся на самых важных оптических характеристиках LED-ламп.
Световой поток
Параметры искусственной освещенности помещения во многом зависят от того, насколько ярко светят лампы. Чтобы оценить эту характеристику, нужно знать световой поток. Он указывается на упаковке в числе остальных параметров и обозначается в люменах (лм).
Учтите, что величина светового потока, как правило, после получаса работы осветительного LED-прибора снижается.
Поэтому, если в магазине вы определили с помощью яркомера, что световой поток соответствует указанному на упаковке параметру, измерьте этот показатель еще раз дома через полчаса после включения.
Так вы установите реальное значение и подсчитаете фактическую светоотдачу лампы – отношение светового потока к мощности (лм/Вт). Для сравнения:
- у лампы накаливания светоотдача составляет около 12,5 лм/Вт;
- у компактной люминесцентной – 60-65 лм/Вт;
- у галогенной – 16-30 лм/Вт.
Цветовая температура
Показатель измеряется в Кельвинах и отражает оттенок свечения, который может быть теплым, нейтральным или холодным. Чем выше значение цветовой температуры, тем больше в спектре освещения синих тонов.
Уровень создания радиопомех
Этот параметр светодиодной лампы к оптическим характеристикам не относится и на упаковке не указывается. Но упоминания заслуживает, так как косвенно говорит о качестве комплектующих, которые используются в источнике питания осветительного прибора.
Светодиодные лампы с хорошими драйверами не производят возмущений электромагнитных волн, поэтому не создают радиопомех.
Вы можете самостоятельно провести простой тест: включите лампу при работающем на расстоянии 1 м радиоприемнике.
Если пошли помехи, значит, проверку прибор не прошел.
Изменение параметров освещенности в процессе пользования лампой
Прежде чем купить партию светодиодных ламп в магазине, приобретите один экземпляр и протестируйте его дома с помощью многофункционального люксметра.
Если все в норме, не спешите убирать измерительный прибор подальше: лампу необходимо периодически тестировать, чтобы вовремя обнаружить изменение значимых характеристик.
Пульсация освещенности
Это один из важнейших параметров светодиодной лампы, который влияет на комфорт пребывания человека в помещении с искусственным светом. Согласно установленным нормам, глубина пульсации осветительного прибора должна быть в пределах:
- 20 % – в спортивных залах, архивных хранилищах, кладовых, на складах.
- 15 % – в читальных залах и других помещениях, не требующих высокой точности работ.
- 10 % – в игровых помещениях и учебных классах, торговых залах, медицинских помещениях.
- 5 % – при работе с персональной компьютерной техникой.
Чтобы точно проверить, соответствует ли норме этот параметр тестируемой светодиодной лампы, воспользуйтесь люксметром-яркомером-пульсметром RADEX LUPIN.
Замеры надо делать не только при покупке, но и в процессе пользования. Иногда бывает так, что в механизме лампы выходит из строя один из компонентов.
Прибор продолжает светить, но появляется пульсация светового потока, глубина которой может достигать 30-60 %.
Яркость света
Если вы заметили, что параметры освещенности комнаты ухудшились, хотя вы не меняли светодиодные лампы, проверьте их яркомером. Стабильную яркость светового потока в течение 3 лет гарантируют считаные производители, остальные не берутся давать таких обещаний.
Как известно, светодиодный кристалл со временем деградирует, поэтому яркость светового потока снижается.
Когда первоначальный показатель уменьшается на 30 %, считается, что срок эксплуатации прибора подошел к концу. Без яркомера определить реальное снижение величины светового потока невозможно.
Но если у вас есть такой прибор, то будет несложно периодически устраивать проверку светодиодной лампе.
Оттенок свечения
Цветовая температура светодиодной лампы также может оказаться нестабильной величиной.
Обычно она зависит от оттенка компаунда, которым покрыты светоизлучатели.
Со временем слой люминофора может истончаться, и цветовая температура LED-лампы становится выше, а оттенок свечения – холоднее.
Светодиодные лампы считаются самыми перспективными приборами освещения. Пользоваться ими выгодно, но важно периодически контролировать такие параметры, как световой поток, освещенность и глубина пульсации.
Источник: https://www.quarta-rad.ru/useful/vse-o-lampax-i-drugix-istochnikax-sveta/kak-menjajutsja-parametry-svetodiodnoj-lampy/
Выключатели с регулятором яркости — диммеры для разных типов ламп
> Выключатели и розетки > Выключатели с регулятором яркости — диммеры для разных типов ламп
Раньше регулирование освещенности помещений проводилось реостатом.
Существенным недостатком у этих приборов было большое потребление электроэнергии, независимо от яркости.
При минимальной мощности лампы электричество расходовалось в том же количестве, что и при максимальной, поскольку большая часть нагревала реостат.
Регулирование освещения в комнате
Сейчас регулятор электрической нагрузки (диммер) можно купить в магазине электротоваров. Он применяется в основном для изменения яркости ламп разных типов и имеет следующие преимущества:
- изменение интенсивности свечения ламп;
- задание автоматического изменения яркости Автоматический диммер свечения с помощью таймера;
- дистанционное управление;
- используется как выключатель и для задания режимов свечения ламп: плавное изменение, создание световых картин, мигание;
- увеличение долговечности ламп за счет плавного пуска;
- экономия потребляемой электроэнергии.
Регуляторы имеют недостатки:
- посторонние помехи мешают работе устройств, у которых отсутствуют фильтры;
- генерация помех для других приборов, принимающих радиосигналы;
- не все устройства экономят электроэнергию;
- выход из строя при малых нагрузках.
Диммер для энергосберегающих ламп: устройство и виды
Разновидности диммеров
Простейшее устройство с регулировкой имеет выключатель и поворачиваемую ручку. От положения потенциометра зависит яркость регулятора. Диммер подходит для управления лампами накаливания и галогенными.
По мощности он подбирается не менее чем на 15% выше подключаемой максимальной нагрузки. У него должна быть встроенная защита от короткого замыкания. Самый простой вариант – это плавкий предохранитель.
Диммер бывает следующих типов:
- Накладной. Чаще всего содержит вспомогательный реостат и используется для светодиодных лент.
- Проходной – для больших площадей помещений.
- Двух- и многоканальные – выбираются по количеству ламп и режимов контроля.
- В местах общего пользования, где частое применение не позволит выполнять их основные функции. Везде можно устанавливать встроенные в выключатели приборы плавного включения ламп, позволяющие увеличить срок их службы.
- В местах, где нет определенности с установкой светильников.
- Механический – поворот ручки. Сначала диммер включается до щелчка, а затем делается установка яркости. Поворотно-нажимное устройство удобнее, поскольку можно применять выключатель с постоянной настройкой регулятора.
- Электронный: кнопочный, клавишный. Можно использовать как выключатель и регулятор.
- Сенсорный – на панели управления реализуется множество разных функций.
- Дистанционный – управление по радиосигналу или с помощью ИК-пульта.
Автоматический диммер для ламп накаливания
- Лампы накаливания и галогенные на 220В. Для изменения силы света могут применяться любые диммеры, поскольку нагрузка только активная (не обладает индуктивностью и емкостью). Недостатком является смещение спектра в сторону красного цвета при снижении напряжения. Ограничение по мощности у светорегуляторов существует в пределах 60-600 Вт.
- Низковольтные галогенные лампы. Для них применим понижающий обмоточный трансформатор, к которому требуется регулятор, способный работать с индуктивной нагрузкой. На нем присутствует маркировка RL. При использовании электронного трансформатора устанавливаются емкостные нагрузки.
Диммер 220В для светодиодных ламп и светильников
Для галогенных ламп необходимо плавное изменение напряжения, что увеличивает срок их службы.
Последние модели определяют тип нагрузки и подстраиваются под него, изменяя алгоритм управления.
Можно одновременно регулировать разные группы ламп: накаливания и галогенные.
- Люминесцентные лампы. Если они запускаются через выключатель, стартер тлеющего разряда и электромагнитный дроссель, обычный диммер и реостат к ним не подходят. Здесь нужна электронная пускорегулирующая аппаратура (ЭПРА).
- Светодиодные лампы. Для них регулирование напряжения приводит к изменению спектра. Поэтому светодиоды регулируются изменением длительности подаваемых импульсов. Мерцание при этом не замечается, так как частота их следования достигает 300 кГц.
Подключение к нагрузке производится последовательно (рис. а). Регулятор работает также, как выключатель, но последний целесообразно устанавливать отдельно, поскольку при выходе из строя от частых переключений придется менять дорогостоящий диммер на новый.
Схемы подключения диммеров
Главным требованием является соблюдение полярности. Фаза всегда подключается к входной клемме диммера, обозначенной буквой L, а с выходной –провод идет на лампу. Обнаружить фазу можно индикатором напряжения.
В разрыв провода фазы часто устанавливают выключатель (рис. б). Он располагается ближе к двери, а диммер – около кровати, чтобы было удобно управлять.
Можно установить еще один регулятор и подключить их между собой параллельно (рис. в). Для этого в распределительную коробку следует провести по 3 провода от каждого устройства. Подобную коммутацию, похожую на проходные выключатели, делают в длинных коридорах.
Применение диммеров отличается по количеству нагрузок. Одинарный метод заключается в подключении одного прибора или объединенных в общую группу. Следующий способ управления основан на акцентных подсветках для выделения отдельных зон.
Регулируемая подсветка помещения
Подключение диммера
Регулятор крепится в монтажной коробке как обычный выключатель. Сначала его подключают при отсутствии напряжения в подводящих проводах, а затем устанавливают в коробку. Затем надеваются рамка и ручка регулирования яркости.
Схемы
Основная схема регулирования интенсивности света ламп у большинства обычных приборов одинакова. Различие заключается только в дополнительных деталях для обеспечения более плавного управления и создания устойчивости на нижних пределах.
Для подачи напряжения на лампу следует открыть симистор (рис. а). Для этого между электродами надо создать напряжение.
Схемы с симисторной регулировкой для ламп накаливания: а – простейшая; б – усовершенствованная
В начале положительной полуволны заряжается конденсатор C через переменный резистор R. При достижении определенного значения симистор открывается.
При этом загорается лампа.
Затем симистор закрывается и аналогичная ситуация происходит на отрицательной полуволне, поскольку полупроводники пропускают ток в обоих направлениях.
Таким образом, на лампочку поступают «обрубки» полуволн с частотой 100Гц, чего не было, когда применялся реостат.
Со снижением яркости все в большей степени проявляется мерцание света. Чтобы этого не было, в схему добавляются детали, как изображено на рис. б.
Симисторы устанавливаются по действующей нагрузке, а допустимое напряжение составляет 400В.
Подбирая величины резисторов и конденсаторов, можно менять начальный и конечный моменты зажигания и стабильность свечения лампы.
Для светодиодных ламп
Несмотря на экономичность светодиодных ламп, гирлянд и лент, вопросы энергосбережения также к ним относятся. Часто возникает потребность снижения яркости свечения.
Светодиодные лампы с обычными диммерами не работают и в процессе регулирования быстро выходят из строя.
Для этого применяются специальные регуляторы двух разновидностей: изменение напряжения питания, управление методом широтно-импульсной модуляции – ШИМ (интервалов включения нагрузки).
Устройства с регулировкой освещенности путем изменения напряжения дорогие и громоздкие (реостат или потенциометр). При этом они плохо подходят к низковольтным лампам и включаются только при 9В и 18В.
Современный регулятор является сложным устройством, обеспечивающим плавный запуск ламп, управление яркостью и задание режимов переключения света по таймеру.
Светодиодная лампа отличается от обычных лент и сборок, подключить которые можно только с помощью дополнительных устройств. Ее основные особенности следующие:
- Наличие стандартных цоколей типов E, G, MR для подключения.
- Возможность работы с сетью без дополнительных приспособлений. Если лампа питается напряжением 12В, в ее характеристиках вспомогательные устройства оговариваются.
- Создаваемый световой поток не должен существенно отличаться от стандартных значений.
Для обеспечения необходимого режима работы внутри лампы встраивается драйвер, выполняющий полезные функции.
Если он предусматривает диммирование, в паспорте и на упаковке об этом сказано.
Яркость таких ламп при этом может регулироваться с помощью обычных регуляторов.
Если диммирование не предусмотрено, следует приобретать специальные устройства управления с ШИМ-регулировкой. Они различаются типами установки:
- модульные (в распределительных щитках) с управлением от выносных регуляторов, дистанционных пультов или по специальным шинам;
- расположенные в монтажной коробке, как под выключатель, с поворотным или кнопочным управлением;
- выносные блоки, монтируемые в потолочных конструкциях (для точечных светильников и светодиодных лент).
Регуляторы на основе ШИМ работают на дорогостоящих микроконтроллерах, не подлежащих ремонту.
Проще изготовить самодельное устройство на базе простой микросхемы.
Диммер, изготовленный на основе таймера NE555, устойчиво работает при напряжении 3-18 В с выходным током до 0,2 А.
Схема диммера для светодиодных ламп
Периодичность колебаний обеспечивается генератором, состоящим из резистора и конденсатора. Величиной переменного резистора можно задавать интервал включения и отключения нагрузки на выходе 3 микросхемы.
Полевой транзистор здесь служит усилителем мощности, поскольку микросхема не справится с нагрузкой от светодиодных ламп. Если ток через них превышает 1А, для транзистора необходим радиатор охлаждения.
Диммер можно подключить к RGB лентам для синтеза света. Только здесь потребуется 3 устройства: по одному на каждый цветовой канал, а затем на все вместе устанавливается один общий выключатель.
Для люминесцентных ламп
Регулирование яркости ламп может производиться с помощью ЭПРА, выполняющих главную функцию их запуска. Простая схема приведена на рис. ниже.
Управление люминесцентной лампой с помощью ЭПРА
Напряжение на лампу подается с генератора частоты 20-50 кГц. Контур, образованный емкостью и дросселем, входит в резонанс и зажигает лампу.
Чтобы изменить силу тока и тем самым интенсивность света, надо изменить частоту.
Диммирование производится только после выхода лампы на полную мощность.
Регулируемый ЭПРА создается на базе контроллера IRS2530D с 8 выводами.
Устройство является полумостовым драйвером на 600 В с функциями запуска, диммирования и защиты от выхода из строя.
Интегральная схема позволяет реализовать все необходимые способы регулирования через 8 выводов и применяется во многих способах изменения яркости ламп.
Блок-схема электронного управления люминесцентными лампами
Выбор.
Про правильный выбор диммеров лучше заранее узнать из видео.
При покупке диммера следует внимательно изучить его технические характеристики и определить, для каких типов ламп он предназначен. Правильный выбор устройства позволяет легко подключить его своими руками без помощи специалистов.
Источник: https://elquanta.ru/vyklyuchateli/vyklyuchateli-dlya-lamp.html
Замена люминесцентных ламп 36Вт на светодиодные аналоги
П
Наши Заказчики часто спрашивают нас о возможности замены люминесцентных ламп 36Вт в офисных светильниках без замены самих светильников.
Мы проанализировали текущее положение дел в данном направлении, чтобы четко понимать затраты Заказчика на модернизацию, а также приобретаемые в связи с этой модернизацией плюсы и минусы.
Оговоримся сразу, для эксперимента мы старались подобрать светодиодные лампы именитых производителей, исключив из списка возможных претендентов продукцию Noname.
Однако, если кто-то из других Производителей или Дистрибьюторов захочет предоставить свою продукцию для тестирования в нашей лаборатории и последующего написания статьи по данному продукту – милости просим: info@stroi-tk.ru.
Возможные варианты замены ламп
Как и в случае с лампами 600 мм существуют два типа светодиодных ламп: подключение ламп с переделкой схемы светильника и включаемые на штатные места без переделки схемы светильника.
В первом случае 220 В подается непосредственно на лампы, из схемы светильника исключаются дроссели, стартеры и прочая ПРА.
Потребляемая мощность светильника складывается из потребляемой мощности светодиодных ламп с цоколем G13.
Данное подключение требует переделки схемы светильника, а, следовательно, требует дополнительных финансовых затрат на переделку (оплата квалифицированного труда электромонтажника).
Во втором – в схеме светильника остаются все элементы ЭмПРА, потребляемая мощность светильника складывается из потребляемой мощности светодиодных ламп с цоколем G13 и потребляемой мощности оставшихся в работе элементов ПРА, схема светильника не изменяется, затраты на переделку схемы теоретически отсутствуют. Почему теоретически? Следует обратить внимание, что по ряду причин не в каждом светильнике такие лампы будут работать и Заказчику, в случае принятия решения о самостоятельной замене ламп на светодиодные, следует хорошенько подумать, прежде чем закупать такие лампы в большом количестве для их замены у себя в офисе. Кроме того, на приобретенных нами лампах четко прописано “Not for use with electronic gear» — «Не для использования совместно с ЭПРА». Вместе с лампой в комплекте идет и свой стартер для LED.
В нашем эксперименте мы попробуем оба варианта подключения и выберем наиболее приемлемый по экономичности, трудозатратам и т.д.
Технические характеристики ламп и предварительный расчет
Согласно «Справочно-технической информации», содержащейся в каталоге компании «Световые технологии», люминесцентные лампы T8 с цоколем G13, длиной 1200мм, д=26мм и потребляемой мощностью 36Вт (наиболее часто встречающиеся у нас) имеют световой поток от 2600 до 3250 Люмен.
Для расчета возьмем среднюю люминесцентную лампу со световым потоком порядка 2900 Лм. Таким образом суммарный световой поток двух ламп в светильнике 2х36 будет составлять 2900х2=5800 Лм, вычтем потери на отражения и прочее (10%), получим – 5220 Лм.
Для эксперимента выбраны светодиодные лампы:
- Прямого включения (220В) со следующими заявленными Производителем характеристиками: световой поток 1800 Лм, потребляемая мощность 18 Вт, цветовая температура 4000 К, рассеиватель матовый.
- Подключения лампы без переделки схемы светильника: световой поток 1500 ЛМ, потребляемая мощность 20 Вт, цветовая температура 3000 К, рассеиватель матовый.
Исходя из нехитрых расчетов, по идее, в результате нашего эксперимента освещенность на рабочей поверхности в случае замены люминесцентных ламп на выбранные светодиодные должна снизиться на 20-30%, потребляемая мощность должна снизиться примерно на 50%.
Подключение ламп, переделка светильников
В качестве «пациента» для трансплантации был выбран накладной светильник типа ЛПО 2х36 с ЭмПРА.
Провели измерения тока потребления при использовании стандартных люминесцентных ламп: 0,680 А при двух включенных лампах и 0,342 А – при одной, а также измерения уровня освещенности на рабочем месте.
Эксперимент с подключением светодиодных ламп для ЭмПРА
Далее мы демонтировали люминесцентные лампы и стартеры и установили на их место светодиодные. Провели измерения тока потребления – 0,154 А (при двух подключенных лампах), а также замеры освещенности как без отражателя, так и при его наличии.
Эксперимент с подключением светодиодных ламп прямого включения
Разобрав светильник мы переделали схему включения, исключив ЭмПРА и подав 220 В непосредственно на лампы, собрали светильник и произвели измерения тока потребления – 0,139 А, а также уровня освещенности на рабочей поверхности.
Результаты эксперимента
Замеренный уровень освещенности на рабочей поверхности при использовании стандартного люминесцентного светильника 2х36 составил 623 Люкс (расстояние от светильника до рабочей поверхности 110 см).
При использовании светодиодных ламп для ЭмПРА замеренный уровень освещенности оказался 565 Люкс, т.о. освещенность упала почти на 18%, в то время, как ожидали мы падения на 20-30% — уже хорошо.
Кроме того, экономия электроэнергии при использовании светодиодных ламп также впечатляет – 0,68А потребляемый ток на люминесцентных лампах (примерно 150 Вт) против 0,154 А – на светодиодных лампах (37 Вт) – более, чем в 4 раза!
Подключение светодиодных ламп прямого включения принесло нам еще больший сюрприз: освещенность на рабочей поверхности УВЕЛИЧИЛАСЬ на 18,5%, а ток потребления снизился еще больше – до 0,139 А (34 Вт).
Субъективные ощущения (светодиодная лампа для ЭмПРА): свет более теплый (вспоминаем про 3000К), точечной засветки рассеивателя от светодиодов не наблюдается, яркость свечения визуально чуть ниже яркости люминесцентных ламп.
Субъективные ощущения (светодиодная лампа прямого включения): свет приятный белый, очень близкий к естественному солнечному, точечной засветки рассеивателя лампы от светодиодов не наблюдается, яркость свечения визуально сопоставима с яркостью люминесцентных ламп.
Плюсы и минусы замены люминесцентных ламп на светодиодные
Вариант с заменой люминесцентных ламп на светодиодные лампы без переделки электросхемы светильника: энергоэффективность не самая высокая, поскольку продолжается потребление электроэнергии самим ЭмПРА, однако практически отсутствуют затраты Заказчика на замену. 4х-кратная экономия электроэнергии с момента внедрения – срок окупаемости модернизации составит менее, чем 1 год. Не требует проведения работ квалифицированным персоналом. Требуется самостоятельная оценка технической возможности замены ламп на светодиодные. Снизился общий уровень освещенности приблизительно на 18%.
Вариант с заменой люминесцентных ламп на светодиодные лампы прямого включения: максимальная энергоэффективность достигается за счет повышения затрат на первоначальном этапе за счет работ по переделке электрической схемы светильника. Энергоэффективность в сравнении с первым вариантом выше приблизительно на 8%. Требует проведения работ квалифицированным персоналом. Ориентировочный срок окупаемости – 1,5 года.
Выводы
Как показал проведенный нами эксперимент, оба варианта замены люминесцентных ламп в светильниках 2х36 на светодиодные аналоги имеют право на жизнь и позволят Вам реально экономить электроэнергию в Вашем офисе, однако к этому вопросу нужно подойти, тщательно взвесив все плюсы и минусы каждого варианта.
Однако, с точки зрения экономической целесообразности, замена ламп на светодиодные не всегда будет эффективна: если выбирать относительно дешевые лампы (350 — 600 рублей по ценам конца 2015 года), ресурс их может оказаться совсем не таким большим, какого мы ожидаем от светодиодных технологий, а применение более дорогие ламп (800 — 1600 рублей) в комплексе с переделкой светильника вообще показывает, что проще (и дешевле) просто купить новый светодиодный светильник.
Еще раз напоминаем, что для эксперимента мы подбирали светодиодные лампы именитых производителей, по своим техническим характеристикам максимально приближенные к характеристикам стандартных люминесцентных ламп, при этом исключив из списка возможных претендентов продукцию Noname. Однако, если кто-то из других Производителей или Дистрибьюторов захочет предоставить свою продукцию для тестирования в нашей лаборатории и последующего написания статьи по данному продукту – милости просим: info@stroi-tk.ru.
Перейти к услуге Замена люминесцентных ламп на светодиодные.
Источник: http://www.stroi-tk.ru/info/expert/led_lamp_36w/
Оцениваем эффективность применения диммера для ламп накаливания
Проверенные временем лампы накаливания были преданы в нашей стране анафеме, но, несмотря на преобладание в ассортименте магазинов электротоваров «экономных» источников света, они все еще есть на прилавках и пользуются устойчивым спросом.
Конечно же, их конструкция, за почти сотню лет своего существования практически не претерпевшая изменений, кому-то может показаться архаичной и вызвать желание заняться модернизацией, чтобы они меньше потребляли электричества, реже перегорали и, вообще, вели себя «по-современному». Есть ли для этого возможности? Да, есть.
Один из способов осовременить «старушку» лампу накаливания – включить в цепь ее питания особый управляющий прибор – диммер. Этот англицизм происходит от слова «затемнять», а прибор занимается тем, что плавно уменьшает яркость свечения лампы.
Как можно регулировать яркость ламп накаливания?
Чтобы по своим техническим характеристикам лампа накаливания уменьшила яркость свечения, надо уменьшить величину подаваемого на нее напряжения. Сделать это можно двумя способами:
- рассеять электрическую энергию на подходе к лампе;
- использовать питающее напряжение для запуска регулируемого прибора.
Рассеять электрическую энергию и не дать ей в полной мере дойти до лампы можно обычным реостатом.
Таких миниатюрных приборов было немало в ламповых, да и полупроводниковых телевизорах, где они занимались различными регулировками. Например, звука.
Если номинал небольшого реостата рассчитан на 220 вольт, то он без проблем погасит любую энергию от бытовой сети. Вопрос только в том, что при этом он сильно нагреется, ведь закон сохранения энергии еще никто не отменял.
Степень нагрева можно уменьшить, если использовать реостат больших размеров, например, балластный бытовой трансформатор, который включают в цепь питания электроприбора для компенсации временных бросков напряжения.
Наличие у каждого выключателя большого трансформатора – это не слишком эстетичное решение.
Кроме того, рассеивание энергии не решает главной задачи – ее экономии.
При включенном реостате, даже если лампочка светит вполнакала, счетчик будет крутиться с той же скоростью.
Чтобы электрическую энергию можно было реально сэкономить, надо между лампочкой и выключателем поставить прибор, питающийся от сети, выходная мощность которого может регулироваться. Им может быть генератор автоколебаний, поскольку нить накаливания в лампе не различает тонкостей происхождения тока, ей главное – чтобы он был переменным.
Автоколебания – что это?
В радио- и электротехнике существует ряд схемных решений, которые позволяют менять направление выходного тока.
Эти изменения направлений могут продолжаться до тех пор, пока на входе прибора существует питающее напряжение.
Поэтому они называются автоколебаниями.
Если к выходу генератора автоколебаний подключить осциллограф, то на его экране вы увидите нечто, похожее на синусоиду.
При внешней схожести с тем, что выдает генератор электрического тока, эти колебания имеют совершенно другую природу.
По факту – это череда импульсов, меняющих знак.
https://www.youtube.com/watch?v=-W_GVVF_o-I
Электротехнические приборы достаточно грубы, не отличают череды импульсов от синусоиды и прекрасно на них работают.
Ярким примером такого «обмана» являются широко распространенные в последнее время сварочные инверторы, использующие автоколебания высокой частоты, за счет чего трансформатор прибора удалось уменьшить в несколько раз.
Вот такой генератор автоколебаний (только гораздо меньших размеров), выдающий череду импульсов с частотой 50 Гц, включается в цепь питания лампой накаливания.
При создании схемы диммера для лампы накаливания используют современные полупроводниковые приборы – тиристоры, динисторы и симисторы.
Они позволяют наиболее просто управлять моментами отпирания и запирания, изменяя тем самым направления тока в цепи и генерируя автоколебания.
Однако существуют генераторы автоколебаний на транзисторе, в основе которых лежит пара мощных полевых элементов.
Также используют схему плавного включения ламп накаливания через блок защиты.
Плюсы и минусы регуляторов яркости ламп накаливания
Каждый прибор или устройство обладают суммой достоинств и недостатков, имеют их и диммеры ламп накаливания.
Главным, но, пожалуй, единственным достоинством этого прибора является то, что он позволяет регулировать яркость свечения, не вызывая побочного нагрева. Позволяет ли диммер существенно сэкономить электрическую энергию и увеличить срок службы лампы? Судите сами:
- для работы генератора автоколебаний переменный ток превращается в постоянный (на его входе стоит диодный мост), поэтому суммарный КПД устройства оказывается еще ниже, чем обычной лампы;
- лампа накаливания при работе вне номинала напряжения также имеет более низкий КПД;
- если начальное напряжение прибора более 30 процентов от номинальных 220 вольт, то начальный бросок тока при включении почти такой же, как и при работе от обычной сети.
Думается, что при таких условиях использование диммера является чисто эстетической прихотью.
Череда импульсов, выдаваемая диммером, является источником радиопомех. И чем короче импульс или выше частота их следования, тем шире спектр дополнительных гармоник.
Это физический закон и изменить его нельзя. Для компенсации этой неприятности в состав схемы прибора вводят LC фильтры (катушки с конденсаторами).
Если в схему подключения диммера добавляются лампы большой мощности, имеющие длинную нить накаливания, то при минимальном напряжении они могут начать «петь» – именно из-за дополнительных гармоник.
Диммеры ламп накаливания категорически нельзя подсоединять в цепи питания компьютеров, телевизоров, радиоприемников, в схему включения люминесцентных ламп, электронных пускорегулирующих аппаратов (ЭПРА).
Вообще, если у вас в цепь управления осветительным прибором включен «затемнитель», при покупке ламп стоит обращать внимание на то, может ли она быть подвергнута диммированию.
Какие бывают диммеры
Несмотря на все недостатки этих приборов, они достаточно широко применяются. Во-первых, потому что какая-то экономия от их использования всё же наличествует, во-вторых, нельзя списывать со счетов и эстетический эффект.
Для потребителя, незнакомого с электротехникой, главным различием этих приборов является способ управления. Наиболее простые модели имеют ручку регулятора, расположенную на корпусе диммера. Если кому-то не нравится ручка, то есть модели с сенсорным управлением.
Самые дорогие из них имеют дистанционное управление – например, от пульта, похожего на «лентяйку», управляющую телевизором.
По принципу действия такие пульты различаются на работающие по радио- или инфракрасному каналу.
Наиболее экзотические диммеры срабатывают от голоса, присутствия в помещении человека – управление с помощью разомкнутого емкостного контура или датчиков тепла.
В настоящее время многие ведущие производители электротехнической техники, такие как Schneider Electric, Feller, OSRAM и другие, начали выпуск диммеров не только для ламп накаливания, но и светодиодных, а также люминесцентных источников света.
Пример регулирования яркости лампы с помощью диммера на видео
2 Комментария
Источник: http://elektrik24.net/provodka/vyklyuchateli/dimmery-vyklyuchateli/dlya-lamp-nakalivaniya-3.html
Как увеличить яркость светодиодной лампы на 25% ?
Выбирая в магазине светодиодные лампы, иногда бывает затруднительно решить какую выбрать, если они полностью одинаковые и отличаются только колбами, прозрачная и матовая.
Многие мои читатели не верили в большую разницу яркости в зависимости от колбы, поэтому провожу тестирование обычной лампочки с цоколем Е27 и под напряжение 220В.
Большинство выпускаются в 3 вариантах защиты светодиодов от внешнего воздействия:
- с матовой из пластика;
- с прозрачной из пластика;
- со стеклянной, матовой или прозрачной.
- 1. Функция матового пластика
- 2. Замеры разницы освещенности спереди
- 3. Замеры освещенности сбоку
- 4. Итоги
Функция матового пластика
Чаще всего диоды не защищены в недорогих китайских кукурузах, а с точки зрения защиты глаз от яркого света, для кукурузы колба и не требуется.
В кукурузе невозможно увидеть все светодиоды одновременно, так как они физически расположены по окружности. А вот для светодиодных ламп классической формы защита от яркого света очень актуальна.
При тестировании Экономки на 850 Люмен без защиты, которая состоит из 11 светодиодов на 1 Ватт, мне хватило взгляда в половину секунды, чтобы потом в течение 5 минут видеть пятна от перед глазами.
Особый вред открытые светодиоды будут наносить глазам детей и пожилых бабулек, дедулек.
Матовая колба тестируемой светодиодной лампы Экономка
Обычно производители пишут, что матовая она рассеивает свет, делая угол свечения больше 180 градусов. Так же полупрозрачный поликарбонат задерживает большое количество света и мешает охлаждать светодиоды, которые находятся в замкнутом пространстве.
Лично я предпочитаю использовать классические led кукурузы, которые легко разбираются, ремонтируются, не перегреваются, и светят на 360 градусов. Единственное не надо их трогать влажными руками, так как контакты ничем не прикрыты.
Считаю, что непрозрачную колбу можно снимать в некоторых случаях, например:
- если лампочка находится в прозрачном рифленом плафоне, которые ставятся в подъездах;
- в закрытых матовых плафонах шарообразной и плоской формы;
- в открытом плафоне, если его свет направлен вверх, в потолок;
- в люстрах, которые рассчитаны на свечу, которая ставится вертикально.
Если колбу не убрать при установке в матовый плафон, то в итоге мы потеряем половину яркости лампы.
Замеры разницы освещенности спереди
Проведем небольшое тестирование светодиодной лампы Экономка на 10W. При помощи люксметра Mastech MS6610 проведем замеры светового потока. Так же узнаем, рассеивает свет, или это все сказки.
Измерение освещенности
Источник света будет расположена в углу комнату на расстоянии 80 см от стен, достаточное расстояние чтобы избежать отраженного света. В условиях полумрака освещённость составляет 3-5 Люкс, что практически равно нулю и учитывать при расчетах не будем.
Сначала измерим падение освещенности непосредственно перед источником. С колбой получается 284 Люкса, без неё 460. Разница составляет 176, то есть без матового колпака освещенность на 62% больше.
Замеры освещенности сбоку
Проведем замеры под углом в 90 градусов, то есть сбоку. Угол свечения светодиодов составляет 120 градусов, соответственно, сектор, в котором разница освещенности будет только заключаться в 30 градусах от плоскости, это вычисляем (180-120)/2=30 градусов.
Замер освещенности сбоку
Как видно по фото, освещенность на этой границе практически одинакова, соответственно с колбой 216 Лк, без неё 229 Лк.
Разница 12 Лк, то есть её практически нет.
Только не смотрите на освещения по фото, так как камера подстраивается сама, и кажется, что разница есть, хотя Люксметр показывает равные значения.
Итоги
Из этого делаем вывод, что она не рассеивает свет, а только защищает ваши глаза от яркого света. Подсчитаем среднюю освещённость:
..
- с колбой 284+216=500 Люкс
- без неё 460+229=689 Люкс
Судя по моим тестам, разница получается в 189 Люкс, что составляет на 38% больше исходного значения. Эти результаты получены для обычной бюджетной led лампочки Экономка, купленной за 160 рублей.
Такая большая разница может быть обусловлена только конкретной моделью лампочки, и могу предположить, что в других увеличение яркости составит минимум 25%.
Если условия эксплуатации светодиодного источника света позволяют, то можно смело избавляться от матовой преграды.
Источник: http://led-obzor.ru/kak-uvelichit-yarkost-svetodiodnoy-lamp-na-25